Review of Researches in Controller Area Networks Evolution and Applications

Wei Lun Ng, Chee Kyun Ng, Borhanuddin Mohd. Ali, Nor Kamariah Noordin, and Fakhrul Zaman Rokhani
william_2909@hotmail.com, {mpnck, borhan, nknordin, fakhrulz}@eng.upm.edu.my

Department of Computer and Communication Systems Engineering, Faculty of Engineering, University Putra Malaysia, UPM Serdang, 43400 Selangor, Malaysia.
Outline

• Introduction
 – Controller Area Network (CAN)
 – CAN Protocol Overview

• Application of CAN
 – Automobile application
 – Home automation application

• Proposed WCAN

• Conclusion
Controller Area Network (CAN)

- bus standard designed to allow microcontrollers and devices to communicate with each other without a host computer.
- distributed network with no central unit
- CSMA/CA for medium access control
- Messages are broadcasted to all other nodes
- message contains no information relating to the destination and source addresses but contains identifier.
CAN Protocol Overview

- 2 standards: standard CAN and Extended CAN
- Difference in identifier
CAN Protocol Overview

- Collision resolved through bit-wise arbitration
- Lower identifier value = highest priority
- 0 as dominant bit and 1 as recessive bit
Application of CAN

Various CAN control modules in Jaguar's sports car, the XK8
Application of CAN

CAN based fire detection system
Wireless CAN

- Adaptation of its wired cousin
- No definite standard proposed yet
- Previous proposed scheme:
 - S. Dridi et. al [1]: RTS / CTS scheme with priority
 - Kutlu et. al [2]: Remote Frame MAC (RFMAC) and Wireless MAC (WMAC)
Wireless Token Ring Protocol (WTRP)

- Follows two analogous characteristics of wired token ring
 - Token passing protocol
 - Ring topology network
- Developed with contention in solving latency and reserved bandwidth problem
Proposed Wireless CAN Protocol

- Frame control (FC) - a SOF, 29-bit message identifier, a RTR, and a reserved bit
- the ring address (RA)
- destination address (DA)
- the source address (SA)
- sequence number - to build an ordered list of stations
- generation sequence - incremented at every rotation of the token by the creator of the token
Operation of WCAN

- Capture the passing token and place message identifier.
- Passing nodes examine the token.
- Higher priority nodes have first access to the token.
- Messages are distributed to all nodes in the network.
Joining a network

- Dynamic manner
- Condition of rotation time does not increase too much
Leaving the network
Performance Evaluation

Two parameters to evaluate:
- Token Rotation Time (TRT)
- Throughput (S/R)
Token Rotation Time

\[TRT = n \times T_m + N \times (T_t + DIFS) \]

- \(T_m \) = transmission time of data packets
- \(T_t \) = transmission time of token
- \(n \) = active nodes
- \(N \) = total nodes
- \(DIFS \) = DCF interframe space – period of time when channel is available
Performance Evaluation

Throughput

\[S/R = \frac{(n \times T_m)}{TRT} \]

Transmission delay, \(D \) – time required for data packet to wait for the token to successfully transmitted.

Average, \(D = \frac{TRT}{2} \)

\[S/R = \frac{(n \times T_m)}{2D} \]
Performance Evaluation

Throughput vs. Delay

- $n = 1$
- $n = 5$
- $n = 10$
Conclusion

• New approach in CAN automation
• Utilizing WTRP as its MAC protocol
 – Flexibility
 – Versatile design
 – Lowering number of retransmission
• Infant stages
• Future works:
 – Simulation environment
 – Delay and performance

THE END